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Abstract 
Small and medium-sized establishments (SMEs) account for a large proportion of 
industrial employment and production in almost all countries. Moreover, the recent 
literature emphasizes the role SMEs play in nurturing entrepreneurship and generating new 
products and processes. Although SMEs could be a source of new ideas and innovations, 
there are substantial productivity differences between small and large establishments. In 
this paper, we analyze three sources of productivity differentials: technical efficiency, 
returns to scale, and technical change. Our analysis on the creation, survival, and growth of 
new establishments in Turkish manufacturing industries in the period 1987-97 shows that 
all these three factors play a very important role in determining the survival probability and 
growth prospects of new establishments.  
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 1. Introduction 

The process of industrialization has been associated with large-scale factory production 

since the early days of the Industrial Revolution. The emergence and dominance of large 

corporations, first in the US, then in European countries in the late 19th Century, is thought 

to be the natural outcome of this process, and small and medium-sized establishments 

(SMEs) have been perceived as a transitory and fading institution of the economic 

development process. In fact, there seems to be a strong correlation between the income 

level of countries and the scale of the establishments where the majority of the labor force 

is employed. In low- and middle-income countries, SMEs are the dominant source of 

employment. As the income per capita rises, the predominance of small establishments 

declines. In high-income counties, most of the labor is employed in large-scale 

establishments (LSEs). 

After the major economic crises in the 1970s, the perception of SMEs started to 

change. SMEs have proved that they could be quite successful in competing against LSEs 

in a rapidly changing uncertain environment, and are essential in nurturing an innovative 

milieu where the flow of new products and processes continuously re-shape competitive 

conditions (for a classical account of small firm innovativeness, see Acs and Audretsch, 

1990). Moreover, the increase in employment (and output) share of SMEs in major 

developed economies in the 1980s showed that they are a vital form of industrial 

organization.  

Although SMEs have been re-discovered by researchers as a dynamic agent of 

economic growth, and various SME-support programs have been adopted all around the 

world, the available evidence strongly indicates that there are substantial and persistent 

productivity differences between small and large enterprises independent of sector and 

country-specific factors. The productivity differential narrows down by economic 
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development but its does not vanish completely even in the developed countries 

(Snodgrass and Biggs, 1995: 67). 

The apparent contradiction between persistent productivity differentials and the 

emphasis on the role of small firm dynamism has generated an increasing number of 

studies on the evolution of firms and industrial productivity. Although research on these 

topics has a long tradition that dates even back to the classical economists, the availability 

of panel data on firms/establishments in the last couple of decades has provided a new 

impetus for a large number of creative studies. Most of these studies are influenced to a 

large extent by the path-breaking theoretical analyses, among others, of Nelson and Winter 

(1978 and 1982), Jovanovic (1982), Hopenhayn (1992), and Ericson and Pakes (1995), 

who emphasize the importance of uncertainty, learning, and selection processes. These 

theories are based on the Schumpeterian notion that markets are in motion, with new firms 

continuously entering the industry and forcing others to exit out of the industry. New firms 

become aware of their actual “productivity” only after observing their performance in the 

industry, and exit if they figure that their performance is lower than a certain threshold 

level. Those firms that discover they are more productive than the threshold level survive 

and grow. A snapshot of this process reveals a positive correlation between productivity 

and size, i.e., productivity differentials even if small firms are not intrinsically less 

productive.  

The empirical work on the dynamics of firms has provided a great deal of “stylized 

facts” which are observed in many countries and/or sectors (for comprehensive surveys, 

see Geroski, 1995; Sutton, 1997; Caves, 1998, Tybout, 2000). One of the strongest 

findings about the entry process is the “stylized fact” that entrants start small: entrants are 

usually smaller than incumbents. This phenomenon is usually explained by two factors. 

First, as emphasized in learning models and real options theory, the entry process is 
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surrounded with uncertainty: entrepreneurs may not exactly know how well they will 

perform in the market. It may be rational to start out small to limit sunk commitments even 

if it imposes a cost penalty, and to invest more after gathering information on the 

(potential) performance. Second, entrants may start out small because of (capital) market 

imperfections. Even a confident entrepreneur may start out with a small firm if asymmetric 

information and capital market imperfections make it difficult to raise capital (the liquidity 

constraint). 

Another stylized fact is about post-entry performance: Most new entrants never 

overcome the competitive pressures. Entrants suffer from a high mortality rate, and there 

seems to be a strong positive correlation between entry size and the survival probability. 

However, new firms that survive achieve growth rates higher than the incumbents do. As a 

result, the growth rate is negatively correlated with the age and size of the establishment 

(for a small sub-set of studies, see Evans, 1987a and 1987b; Dunne et al., 1989; Audretsch, 

1995; Mata, Portugal and Guimarães, 1995; Hart and Oulton, 1996; Audretsch, Santarelli 

and Vivarelli, 1999). 

Although the concept of “productivity” plays an important role in understanding 

firm dynamics, it is simply defined by a cost parameter in most of the theoretical studies, 

and measured usually as labor productivity (value added per employee or hour worked) in 

empirical studies without any specific focus on its sources. This paper contributes to the 

existing literature by focusing on the dynamics of three sources of productivity: economies 

of scale, technical efficiency, and technical change. The novel feature of our study is to 

measure these three factors at the establishment level, and to keep track of their evolution 

over the life of entrants. In contrast to some earlier empirical work, we do not consider 

entrants as a homogenous group: entrants are classified into two groups, “small” and  
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“large” on the basis of relative entry size, and the persistence of performance differentials 

is also analyzed. 

The aim of this paper is then two-fold: i) to investigate the sources of productivity 

differentials, and ii) to understand if differences between small and large establishments 

tend to vanish as a result of selection and learning processes. In this context, we also 

estimate hazard functions for entrants to test the effects of various establishment- and 

industry-specific factors on survival probabilities, to see if active and passive learning 

processes play a significant role. A detailed analysis of productivity differentials and their 

sources is essential for designing efficient SME-support policies, because policies that 

encourage the survival of unproductive firms and restrict learning and experimentation 

processes may impose a heavy welfare loss on society. SME-support policies that target 

specific aspects that induce SMEs to be more productive and/or to grow faster would 

enhance social welfare.  

The rest of the paper is organized as follows: Section 2 presents a simple 

framework for exit decisions. Basic concepts, estimation model, and data sources are 

explained in Section 3. Stochastic production frontier estimation results and a descriptive 

analysis of firm dynamics are presented in Section 4. Survival functions are estimated in 

Section 5, and major findings are summarized in Section 6. 

 

2. The framework 

 Our framework is based on two strands of the literature: models of industry evolution, and 

stochastic production frontier approach. We first summarize the entry and exit decision of 

a firm here, then define the concepts of technical efficiency, returns to scale, and technical 

change at the establishment level in the following section. 

The firm is assumed to choose its output, q, so as to maximize expected profits.  
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where subscript t denotes time, and superscript e denotes expected value. p is the product 

price, q the output level, and c(q,θ) is the cost function that is increasing in q, and 

decreasing in θ, the productivity parameter. Here we assume that the firm decides on its 

output level at time t before it observes its actual productivity level.  

The optimum output level is denoted by q*(pe|θe) and the corresponding profit 

function can be written as π*(pe, θe). 

Let V be the opportunity cost of being in the industry, i.e., the expected present 

value of the firm’s assets in an alternative activity. It is defined by 

V = (1 – s)A 

where A is the value of assets, and s the degree of asset specificity (0 < s < 1). We assume 

that asset specificity is increasing in the value of fixed assets (machinery and equipment), 

K. If (1 – s) < A(∂s/∂K), then ∂V/∂K < 0. It other words, we assume that capital intensive 

firms have lower opportunity costs because they are less flexible in moving their assets 

towards other activities. 

The value of continuing the operation, vt,  is given by the following recursive 

condition: 

vt(pe
t, θe

t) = πt
*(pe

t, θe
t) + r max {V, vt+1(pe

t+1, θe
t+1)}   

where r is the discount factor. The firm will exit from the market if the value of continuing 

the operation is less than the opportunity cost, vt < V.  

There are three variables that affect the exit decision (and entry decision at time 0) 

of a firm: expected productivity, expected prices, and the opportunity cost of the operation.  

“Productivity” can be decomposed to three components: technical efficiency, 

economies of scale, and technological level. Changes in these variables, i.e., learning and 
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technical change, will then govern the future (expected) values of the productivity 

parameter in the exit decision problem.  

The concept and measurement of technical efficiency was made operational by 

Farrell (1957) who also discussed in detail the factors that lead to inefficiency in 

production. Technical efficiency refers to the ratio between actual output and the 

maximum output the firm could produce with the set of inputs and technology it uses (the 

qA/qA
m ratio for firm A with one input in Figure 1).1 (For recent comprehensive surveys, 

see Kalirajan and Shand, 1999; and Kumbhakar and Lovell, 2000). There are various 

arguments on the impact of firm size on efficiency. On the one hand, it is claimed that 

large firms could be more efficient in production because they could use more specialized 

inputs, coordinate their resources better, etc. On the other hand, it is emphasized that small 

firms could be more efficient because they have flexible, non-hierarchical structures, and 

do not usually suffer from the so-called agency problem. 

 

Figure 1. Technical efficiency, returns to scale, and biased technical change 
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1 This is indeed an output-oriented definition. Efficiency could also be defined in terms of inputs (input-
oriented), and these two definitions could lead to different values. Data envelopment analysis and stochastic 
production frontier estimation are two widely used methods to estimate the maximum output, i.e., the 
production frontier. 
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Empirical studies on the relationship between establishment size and efficiency 

have not generated unambiguous results, although they suggest that, in many sectors, large 

establishments tend to be more efficient that small establishments (see, for example, Caves 

and Barton, 1990: 115-130; for studies on Turkey, see Taymaz and Saatçi, 1997, and 

Taymaz, 1997). 

Economies of scale in production have been a popular topic of both theoretical and 

empirical research. Although constant returns to scale are assumed in many theoretical 

models for the sake of analytical tractability and the existence of a unique equilibrium, 

there are numerous historical/empirical studies that have shown that variable returns are 

the norm in many sectors (for example, see Pratten, 1971; Chandler, 1990). Therefore, the 

main issue is how small establishments compete in spite of disadvantages due to 

economies of scale (Pratten, 1991: 93-104; Audretsch, 1999).  

Figure 1 depicts a variable returns to scale production function with one input, L. 

There are increasing returns to scale up to point Z, constant returns to scale at point Z, and 

decreasing returns to scale thereafter. A firm achieves maximum productivity when there 

are constant returns to scale (point Z).2 Thus, small and large establishments could be 

relatively less productive depending on their position on the production frontier. If it is 

assumed that there are no decreasing returns to scale beyond point Z, or if large firms 

could avoid lower productivity of large-scale production by multi-plant operations, then 

variable returns to scale would lead to productivity differentials between small and large 

establishments.  

                                                 
2 However, given the set of input and output prices, the firm would prefer to operate at a larger scale (to the 
right of point Z) where marginal cost is higher than the average cost. Caves and Barton (1990: 10-11) use the 
concept of “scale inefficiency” to refer to the case where production is carried out at scales either too small or 
too large to minimize costs of production. 
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Finally, technical change is another important, but often neglected, factor in 

explaining productivity differentials. 3 In most of the empirical studies, production 

functions estimated are in quite restricted form that does not allow for biased technical 

change. However, if technical change is biased, then small and large establishments that 

use inputs in different proportions may experience different rates of technical change. 

Figure 1 depicts the effects of biased technical change with one input. If technical 

change is neutral, than there will be a parallel shift in the production function, i.e., the 

same rate of technical change for all establishments. If technical change is biased, then 

establishments operating at different scales will benefit from technical change at different 

rates. For example, in Figure 1, the rate of technical change for the small establishment, B, 

is much higher than the rate of technical change for the large establishment, C, even if 

these two establishments operate on the same production frontier.4 Since small and large 

establishments tend to use inputs in different proportions, biased technical change could be 

an important factor in explaining productivity dynamics.  

To summarize, the expected productivity level at time t in the exit decision problem 

is assumed to be a function of technical efficiency and returns to scale at time t-1 (λt-1 and 

µt-1, respectively), and expected changes in these variables, and the expected rate of 

technical change.   

θt
e = θ(λt-1, µt-1,  ∆λt-1, ∆µt-1, δt-1) 

where ∆λt-1 is the average rate of change in technical efficiency from entry time till the 

present time, ∆µt-1 the average rate of change in the returns to scale parameter, and δt-1 the 

average rate of technical change in the same time period. Thus, we expect that levels and 

                                                 
3 There are some recent studies that estimate total factor productivity growth rates by establishment size (see 
for example, Awe, 2002; Urata and Kawai, 2002). These studies, however, could not differentiate the effects 
of economies of scale and technical change because of the assumptions imposed.  
4 For example, the logarithmic rate of technical change for establishment B is equal to ln(qB

2/qB
1) whereas it 

is equal to ln(qC
2/qC

1) for establishment C. 
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changes in technical efficiency, returns to scale, and technology affect survival 

probabilities. 

 

3. Estimation of stochastic production frontiers and data sources 

In estimating technical efficiency, returns to scale and the rate of technical change at the 

establishment level, we use translog specification for production frontiers because the 

translog function is a second-order approximation to any arbitrary function. The translog 

stochastic production frontier is defined by: 

ftft
i i i j

iftiftijiftTiTTTiftift vxxxtttxy −++++++= ∑ ∑ ∑∑ εβββααα lnlnlnlnln 2
12

0

where the subscripts f and t indicate plant and time; y is the output; xi is a vector of inputs. 

The subscripts i and j index inputs (i,j = K, capital; L, labor; E, energy; R, raw materials). 

The ε-random errors are assumed to be independently and identically distributed as 

N(0,σ2
ε) and independent of the v-terms which designate plant-specific technical 

inefficiency in production. 

The technical efficiency of a plant is specified as the ratio of its actual output to the 

potential output. Then, the technical efficiency of production for the f-th firm at time t is 

 

defined by: 

echnical efficiency lies in the interval 0 to 1, where the upper bound indicates full 

efficien

inclusion of time as a variable in the production frontier allows for the shifts of 

the fro

neutral if all βTis (βTL, βTR, βTE, and βTK) are equal to zero. 

fteTE ft
ν−=

T

cy. 

The 

ntier over time, which are interpreted as technical change. In this model, technical 

change is input i-using (or input i-augmenting) if βTi is positive. Technical change is 
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The rate of technical change, δ, is then defined by: 

∑++=∂= x∂
i

iftTiTTTftft t ty ln2/ln ββαδ

The elasticity of output with respect to the ith input is defined by: 

cale are defined at the 

establishment level because their values depend on the levels of inputs. Therefore, this 

metho

are 

ibuted, such that vft is defined by the truncation of the 

normal

where u-random errors are assumed to be independently and identically distributed as 

N(0,σ2
u) and z’s are the following plant-specific factors that influence technical efficiency:  

employ

tTiβxxy
j

jftijiiftftift βαη ∑ ++=∂∂= lnln/ln

The returns to scale, κft, is the sum of output elasticities:  

∑=
i

iftft ηκ

Note that both the rate of technical change and returns to s

d allows us to compare technical efficiency, returns to scale and rate of technical 

change at the establishment level. 

Following Battese and Coelli (1995), the technical inefficiency effects, vft, 

assumed to be independently distr

 distribution with mean µft and variance σ2
v. This mean inefficiency term is assumed 

to be a linear function of some plant-specific factors: 

∑ ++=
m

uzδδµ  
=k

ftkftkft
1

0

The stochastic production frontiers for all ISIC 4-digit manufacturing industries in 

Turkey are estimated separately by using the panel data of all private establishments 

ing more than 25 people and all state-owned establishments in the years 1987 to 
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1997.5 The data source is the Annual Survey of Manufacturing Industry conducted by the 

State Institute of Statistics.  

The output is measured by total output (sales + increases in output stocks) at 

constant 1987 prices. Depreciation allowances at 1987 prices are used as a proxy for 

capital (K). The labor input (L) is measured as the total number of hours worked in 

production. Energy (E) is measured as the value of fuel and electricity consumption at 

1987 prices. The raw materials input (R) is measured as the expenditure on inputs (raw 

materials, supplementary materials, etc.) at constant 1987 prices.  

The estimation method requires joint estimation of a stochastic production frontier 

and a model for technical efficiency. The following variables are used as explanatory 

variables in the efficiency effects model. 

The Size variable is utilized to detect the relationship between the size of the plant 

and its technical efficiency level, and measured in terms of the log number of personnel 

employed. Region, the variable capturing the effects of agglomeration and urbanization 

externalities, is defined by the proportion of the output of the region in which the plant is 

located relative to the total output. Owned and Joint are dummy variables taking the value 

of 1 if the plant is individually owned or a stock company, respectively. These ownership 

variables are used to test the influence of the legal status of companies on technical 

efficiency. Overtime is defined by the proportion of the number of hours worked in the first 

shift to total number of hours worked, which depicts the effects of shift-work on technical 

efficiency. S-input and S-output variables are used to test the impact of subcontracting 

relations. S-input (S-output) variable is measured as the proportion of inputs (outputs) 

subcontracted to (by) other firms. The effects of product characteristics and strategic 

behavior on technical efficiency are tested by the advertisement intensity, Advertising, 
                                                 
5 There are 86 ISIC (Revision 2) 4-digit manufacturing industries. The following industries were excluded 
from the analysis because of the lack of a sufficient number of observations: 3232, 3542, 3845, 3849, 3853, 
3903 and 3909.  
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which is measured by the proportion of advertisement expenditures in total costs. Private 

and Foreign are defined as the shares held by private national and foreign agents, 

respectively. Technology is a dummy variable that takes the value of 1 if the firm 

transferred any foreign technology. Wage, the average wage level, is included as it may 

reflect the quality of the labor employed. Further, the women, technical, and administrative 

personnel shares are other control variables utilized to detect the impact of the skill 

composition of production workers. 

 

4. Competition and Productivity Dynamics: A Descriptive Analysis 

The Frontier 4.1 program developed by Coelli (1994) is used to obtain joint estimates of 

the parameters of stochastic production frontier and efficiency effects models for 79 

sectors at the ISIC 4-digit level. For each sector, average rates of technical change, returns 

to scale, and technical efficiency are calculated at the sectoral (geometric) means of inputs. 

Table 1 presents the findings summarized at the ISIC 2-digit level. 

The results show that the average rate of technical change in the period of 1987 to 

1997 is quite high for engineering industries (4.5%). At the 4-digit industry level, the 

structural metal products (7.4%), engines and turbines (7.1%), special industry machinery 

(9.7%), office, computing and accounting machinery (8.2%) achieve the highest rate of 

technical progress in the engineering industries. The glass and cement (2.2%), basic metal 

(1.2%), wood products (1.0%), and chemicals (0.9%) industries have a mediocre 

performance. The traditional industries like food, textiles, and paper and printing have 

quite low, even negative, rates of technical change. 

At the ISIC 4-digit level, capital-using technical change is observed in 12 industries 

at the average input use, and labor-using technical change is observed in 13 industries 

(capital-saving in only one industry). There is a noticeable bias towards raw material input-
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saving change in 26 industries. Raw materials-using technical change is observed in only 3 

industries. There is no clear pattern for energy input (energy-using in 6 industries, and 

energy-saving in 8 industries). 

The average values of the returns to scale parameters at the 2-digit level indicate 

that in most of the industries there are mild decreasing returns to scale. The lowest returns 

to scale are observed in the basic metal (0.91) and textile (0.92) industries.  

Establishment size is found to be one of the main determinants of efficiency. In 

about a third of the sectors, establishment size has a positive impact on efficiency, and in 

about half of the sectors, it does not have a statistically significant impact on efficiency. In 

a small group of industries, establishment size has indeed a negative impact on efficiency. 

The analysis of establishment-level efficiency estimates reveals that some small 

establishments are as efficient as large plants even in those industries where size is a 

significant determinant of efficiency.  

Among the efficiency effects variables, the most significant variable is the wage 

rate. Those establishments that pay relatively high wages are associated with a high 

technical efficiency level in most of the industries. The agglomeration and urbanization 

effects captured by the region variable have a positive association with technical efficiency 

in 14 industries.  

Estimated values of technical efficiency, returns to scale, and rate of technical 

change are shown in Table 2. Establishments are classified into two groups, “small” and 

“large” to make comparisons on the basis of size differences. “Small” (“large”) is defined 

as an establishment that employs less (more) than the (geometric) mean of the industry at 

the ISIC 4-digit level. All performance variables are measured relative to all other 

establishments operating in the same industry to eliminate industry-specific effects. 

Therefore, “relative size” means the difference between the (log) size of the establishment 
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and the industry mean, and it gives the percentage difference between establishment size 

and industry mean. “Relative efficiency”, “relative returns to scale” and “relative rate of 

technical change” are defined as the difference between the establishment’s value and the 

average value of all establishments in the industry. 

There are 12788 establishments in the database for the period 1987-1997, and 8191 

of these are new establishments (entrants). There are, on average, 4.6 observations per 

establishment (4.0 for small, and 5.8 for large establishments). 

The stylized fact on entrant size is valid for Turkish manufacturing industries as 

well: entrants are 40% smaller than incumbents, and the exit rate is quite high for small 

entrants. Only 41.6% of small establishments survive until age 5 whereas the 5-year 

survival rate is 51.2% for large establishments.6 However, there are significant differences 

in growth rates. Small establishments grow 3.9% per year, whereas large establishments 

shrink 1.9% per year. 

Figure 2a shows changes in the mean size of all cohorts of entrants. New 

establishments start small but grow quite rapidly, and those that survive 5-6 years reach the 

average size in the industry. The increase in the mean size of entrants is caused by two 

factors: exit of smaller entrants, and rapid growth of survivors. Figure 2b depicts changes 

in the mean size of non-survivors by survival duration. As shown clearly in Figure 2b, 

there is a strong correlation between survival duration and entry size. (ANOVA analysis 

indicates that the relationship is statistically significant at the 1% level.) Those 

establishments that survive longer were (relatively) larger establishments at the time of 

entry. Moreover, non-survivors do not exhibit any growth (except the first year), tend to 

stagnate, and even shrink before they finally exit. Survivors, on the other hand, achieve 

quite high growth rates, and eliminate size disadvantages in 5-6 years. 

                                                 
6 Log-rank test rejects the equality of survivor functions of small and large establishments at the 1% level. 
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The data show that entrants are less efficient than incumbents, and the efficiency 

differential is wider for small entrants. Small establishments are 3.3 percentage points less 

efficient that an average establishment in the same industry, whereas large establishments 

are 5.3 percentage points more efficient.7 However, the mean efficiency of entrants tends 

to increase over time (see Figure 3a). Those establishments that tend to exit earlier have a 

lower efficiency level at the time of entry. In other words, as in accordance with the 

learning models of firm dynamics (see, for example, Jovanovich, 1982), bad performers 

realize earlier that they would not be competitive in the market. Moreover, non-survivors 

are those establishments that are not able to improve their efficiency irrespective of the 

initial level (Figure 3b). Survivors achieve rapid increase in their efficiency, and become as 

efficient as others in 4-5 years (Figure 3c). It seems that there is not any difference 

between entry size and learning performance (efficiency improvements): large entrants are 

more efficient that small entrants, and they tend to learn as fast as small entrants (Figure 

3d).  

As may be expected, the relative returns to scale value are positive for small and 

negative for large establishments, i.e., returns to scale are much higher for small than large 

establishments. Since entrants start small, scale disadvantages are also important for small 

entrants. Figure 4a shows that relative returns to scale are higher for entrants (5.6 

percentage points), but as entrants grow, the difference declines. Relative returns to scale at 

entry are significantly correlated with the survival duration for non-survivors. For example, 

those establishments that survive only one year had a scale disadvantage of about 8 

percentage points at entry year, whereas those that survived 9 years had indeed a 2-3 

                                                 
7 Unles otherwise stated, all differences between small and large establishments are statistically significant at 
the 5% level. 
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percentage points advantage (Figure 4b). Non-survivors are not able to overcome scale 

disadvantages. Survivors tend to reduce scale disadvantages quite rapidly (Figure 4c).8 

Although efficiency and returns to scale indicators show that small establishments 

are in a disadvantageous position, technical change seems to favor small size. The 

difference between rates of technical change in small and large establishments is about 

0.15 percentage point per year (Table 2). Entry-time rates of technical change are even 

higher for small establishments. An average small entrant achieves 0.22 percentage point 

higher rate of technical change than incumbents do. 

The decomposition of technical change reveals very interesting differences between 

small and large establishments: raw materials-augmenting technical change favors small 

establishments, whereas capital and especially labor-augmenting technical change favors 

large establishments (see Table 2). Raw materials-augmenting change contributes a 0.5 

percentage point to relative productivity increases in small establishments every year, 

whereas its contribution reaches almost one percentage point for small entrants at the time 

of entry. However, this advantage tends to vanish over time as a result of growth and 

changes in the combinations of inputs of survivors (see Figures 5a, 5b, and 5c). 

Although small entrants are less efficient, they tend to grow fast and improve on 

their efficiency and scale disadvantages. But do they reduce their disadvantages against 

large entrants? We compare small and large entrants to test if the entry size has a persistent 

impact on performance. Table 3 presents the data and test statistics on small and large 

establishments that survived at least five years.9 Small entrants tend to increase their 

relative size thanks to high growth rates, whereas large entrants grow almost at the same 

rate as incumbents do. As a result, the size differential contracts. The ANOVA analysis 

                                                 
8 Nguyen and Reznek (1991) and Nguyen and Lee (2002) found no difference between small and large 
establishments in the US data. Although the method used is not exactly the same, their findings may indicate 
that there may be country-specific differences between small and larges establishments. 
9 In Table 3, entrants are classified according to their entry size. 
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indicates that small and large entrants have different growth rates. As small entrants get 

larger, they also eliminate their disadvantages arising from operating at sub-optimal scales.  

Small entrants enter the market with low technical efficiency but survivors improve 

their efficiency gradually. However, large entrants who are more efficient than small 

entrants at the time of entry also improve their efficiency almost at the same rate. 

Therefore, small entrants are not able to narrow down the efficiency differential that 

remains around 7-8 percentage points. Therefore, entry-time size differences seem to have 

persistent efficiency effects. 

Small entrants have an advantage in achieving somewhat higher rates of technical 

change for about two years after entry, and this advantage disappears as the establishment 

gets 5-6 years old. Large entrants do not enjoy this advantage, and stay behind small 

entrants. Thus, the technical change differential stays at the same level even 9 years after 

entry.  

Our analysis of firm dynamics shows that economies of scale are one of the major 

sources of productivity differentials between entrants and incumbents, and between small 

and large establishments. Surviving entrants grow faster and ease scale disadvantages. 

However, efficiency differentials between small and large entrants are persistent.  

 

5. Selection and Learning Processes: A Survival Analysis  

In this section, we analyze the effects of learning and competition on the survival of 

entrants. Our focus is on the role technical efficiency, returns to scale and technical change 

play in exit decisions. The framework summarized in Section 2 suggests that all these 

variables, as well as changes in these variables determine the exit decision. 
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The econometric analysis of survival is based on the estimation of the hazard 

function that defines the probability of exit in a certain time period as a function of a set of 

time-varying covariates: 

dt
XtTdttTtp

Xth dtt

dtt
),|(

lim);(
0

+

→

≥+≤≤
=  

where h(.) is the hazard function, p(.) the probability function, and Xt is the covariate path 

of X up to t. A functional form has to be assumed for the hazard function, h(t), in the 

empirical implementation of the model. The Cox proportional hazards model is used 

frequently in empirical studies. The Cox model assumes a proportional hazard function 

that is defined by 

βtXethth )()( 0=  

where h0(t) is the baseline hazard function, X is a vector of explanatory variables, and β is a 

corresponding vector of regression coefficients. The β parameters are estimated by the 

maximization of the partial likelihood function that does not require the specification of 

h0(t). 

The dependent variable is the time of exit. The exit time of those plants that 

survived until the end of 1997 is not observed (the longitudinal data for the period 1987 to 

1997 were used in the analysis). Thus the distribution of the dependent variable is censored 

at year 1997. 

In the estimation of the Cox proportional hazard function, we use two sets of 

explanatory variables. The first set includes establishment-specific variables. The second 

set includes data about the characteristics of the industry defined at the 4-digit ISIC level in 

which the establishment operates. This specification allows us to infer the establishment- 

and sector-specific characteristics that determine the survival process. 
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Establishment-specific factors include technical efficiency level and the degree of 

returns to scale at time t-1 (releff and relrts).10 The average annual rate of technical change 

(relrtc), and the average annual changes in technical efficiency (greff) and the degree of 

returns to scale (grrts) achieved since the time of entry are also included to test the effects 

of (active) learning on survival. 

The framework summarized in Section 2 suggests that the opportunity cost of being 

in the industry has a negative impact on survival probability. We use capital intensity 

relative to the industry mean (rellk) as a proxy for this factor, because capital-intensive 

establishments could not be flexible enough to move into other activities. In other words, 

capital-intensive establishments may tend to be more likely to continue their operations in 

the same industry.  

Establishment size in terms of the number of employees (relsize), and the annual 

average growth rate (grsize) are also included into the model because almost all empirical 

studies on this topic have found that size is one of the most important determinants of 

survival probability. The size variable may have a significant impact on the exit decision 

because it could be related to the expected prices. A large establishment can control to 

some extent the product price to enhance its profits. Therefore, large establishments tend to 

survive longer. The growth rate of the establishment will have the same effect on 

expectations. 

There are, of course, some industry-level variables that are important in setting the 

product price. The first one is the size distribution of establishments in the industry (lldev). 

If establishments in the industry are of equal size, competition would be fierce, and the 

product price, and, hence, the value of continuing the operation will be lower. In other 

words, the probability of survival will be positively correlated with the size distribution of 
                                                 
10 Since the effect of returns to scale depends on how far the establishment is located from the “optimum” 
point, we use the absolute value of the difference between the degrees of returns to scale of the establishment 
and of the industry in the Cox model. 
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establishments. Another important dimension of the market structure is, of course, the 

number of establishments in the industry (lnest). If there are many firms in the market, the 

market will be more competitive that leads to higher probability of exit.  

Finally, we use some additional industry-level variables to capture industry-specific 

differences in the innovative environment, concurring with Audretsch (1991 and 1999) that 

the effects of “technological regimes” on post-entry performance may be important. We 

use the proportion of innovative establishments (inno), the proportion of innovative large 

establishments (lseinno), and the proportion of innovative small establishments (smeinno) 

to test if survival probabilities are affected by “technological regimes”. The innovation 

data was collected for the first time in Turkey by the State Institute of Statistics (SIS) in 

1998.11 The survey covers the innovation activities of establishments in the period 1995-

97. We calculated proportions of innovative establishments for all ISIC 3-digit industries 

for the period 1995-97. Since the innovation data are not available for all years, we also 

use the average rates of technical change for all ISIC 4-digit industries for each year, and 

use this variable (sectrtc) in the estimation of the Cox proportional hazards model. 

Cox hazards function estimation results are summarized in Table 4. The table 

presents “hazard ratio” estimates that indicate the effects of variables on the baseline 

hazard (exit) probability. If the hazard ratio is equal to one, the variable under 

consideration does not have any effect on the exit probability. A hazard ratio larger 

(smaller) than one indicates that the variable increases (decreases) the hazard probability. 

In the first model in Table 4, three productivity variables (efficiency, returns to 

scale, rate of technical change) and the current size are included. Estimation results 

indicate that more efficient and large establishments are more likely to survive, whereas 

establishments with scale disadvantages are more likely to exit. It is interesting that 

                                                 
11 The survey adopted a questionnaire compatible with the Community Innovation Survey of the EU, and the 
concept of innovation as defined by the Oslo Manual. 
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establishments that achieve relatively faster technical change are also more likely to exit. 

However, this variable (relrtc) becomes insignificant when the sectoral innovation 

variables are added into the model. 

In the second model, growth rates, size differentiation, and capital intensity 

variables are included. The technical efficiency variable now becomes insignificant and all 

new variables have expected effects on hazard probability. It is interesting that, although 

the growth rates of returns to scale and size variables (grrts and grsize) are highly 

correlated, both of them have significant coefficients. 

Sectoral innovativeness variables (inno, lseinno, and smeinno) are included in 

Models 3 and 4. All these variables are statistically significant. Establishments have higher 

survival probabilities in industries populated with innovative establishments. Moreover, 

the coefficient of the small establishment innovativeness variable is smaller than the 

coefficient of the large establishment innovativeness variable. In other words, small firm 

innovativeness has a stronger impact on the survival probability.12  Finally, when the (log) 

number of establishments and sectoral rate of technical change variables are included, 

large establishment innovativeness becomes insignificant. Sectoral rate of technical change 

variable has also insignificant coefficient when it is included into the model with 

innovation variables. The number of establishments has the expected positive impact on 

the hazard rate. 

 Our findings support both active and passive learning models: those establishments 

that perform worse tend to exit earlier, whereas improvements in performance make 

establishments to stay longer. In this process, establishment size and returns to scale where 

the establishment operates are both important determinants of survival, even if they are 

highly correlated. The survival dynamics are also shaped by innovativeness of the industry 
                                                 
12 In order to explore if sectoral innovativeness has a different impact on small and large establishments, we 
also included size-sectoral innovativeness interaction terms into the model, but these interaction variables all 
had insignificant coefficients.  
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in which the establishment operates. Entrants are more likely to survive in industries 

populated, especially by small, innovative establishments. The likelihood of survival 

confronting entrants is generally lower in “mature”, less dynamic industries.  

 

6. Conclusions 

 The analysis of productivity dynamics at the establishment level reveals that 

a) New firms usually start small, 

b) New firms, on average, are less efficient and enter at sub-optimal scale, but achieve 

somewhat higher rate of technical change,  

c) There is a positive correlation between entry size and entry level of efficiency, 

d) Those establishments that have lower efficiency level and sub-optimal scale are 

more likely to exit, and 

e) Those establishments that increase their efficiency and/or scale after entry are more 

likely to survive. 

To summarize, the empirical evidence shows that the productivity differential between 

SMEs and LSEs can be explained by the dynamics of entry, learning, selection, and exit 

processes. Thus, our analysis lends support to passive learning, active learning, and scale 

theories of productivity differentials. In other words, a large number of establishments are 

founded on the basis of optimistic expectations about the firm’s profit potential. The 

competition process selects which firms are not efficient enough to survive (passive 

learning). Therefore, a large proportion of firms exit within a few years after their entry, 

and a small number of establishments are able to improve their efficiency and survive 

longer (active learning). Surviving establishments tend to increase their scale and reduce 

their cost disadvantages that arise due to increasing returns to scale at sub-optimal levels, 

but they find it difficult to overcome efficiency differentials.  
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This process, described by Schumpeter as the process of “creative destruction”, is a 

wasteful process. The Schumpeterian economists suggest that although this process has 

certain costs, experimentation and selection are necessary to create an environment where 

new ideas can flourish and be tested.  
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Table 1. Technical change, returns to scale, and technical efficiency 
in Turkish manufacturing industries, 1987-97  
          
Sector Rate of technical Returns to Technical 
    change scale efficiency 
31 Food and Tobacco -0.019 0.948 0.718 
32 Textile 0.003 0.921 0.738 
33 Wood Products 0.010 0.952 0.721 
34 Paper and Printing -0.009 1.022 0.831 
35 Chemicals 0.009 0.945 0.705 
36 Glass and Cement 0.022 0.955 0.601 
37 Basic Metal 0.012 0.914 0.656 
38 Engineering 0.045 0.981 0.722 
39 Other Manufacturing -0.073 1.010 0.400 
Note: Mean values of ISIC 4-digit industries   
 

 25



Table 2. Descriptive statistics (mean values, 1987-97)       

     
                  
Label Variable All establishments Entrants (entry values)
    All Small Large  All Small Large
Establishment-level variables  
releff Relative efficiency   

  

   

  
   

   
  
  
  

 
 

0.000 -0.033 0.053 -0.037 -0.056 0.025
relrts Relative returns to scale 0.000 0.055 -0.090  0.056 0.094 -0.070
relrtc Relative rate of technical change (pp) 0.000 0.055 -0.089  0.187 0.222 0.069
   Capital bias 0.000 -0.148 0.240  -0.108 -0.193 0.174
   Labour bias 0.000 -0.303 0.489  -0.238 -0.433 0.405
   Energy bias 0.000 0.023 -0.037 -0.040 -0.068 0.049
   Raw materials bias 

 
0.000 0.483 -0.780  0.573 0.915 -0.560

relsize Relative size 0.000 -0.503 0.812 -0.395 -0.733 0.723
grsize Growth rate of size 0.019 0.039 -0.014     
greff Growth rate of efficiency 0.002 0.002 0.002     
grrts Growth rate of RTS -0.002 -0.003 0.000     
5year 5-year survival rate 0.439 0.416 0.512     
rellk Relative capital stock 

 
0.000 -0.660 1.067 -0.462 -0.873 0.896

rts Returns to scale 0.905
 

0.961 0.816 0.960
 

0.999
 

0.830
 Sector-level variables 

lseinno LSE innovation rate 0.398 0.396 0.402 0.389 0.386 0.398
smeinno 

 
SME innovation rate 

 
0.209 0.207 0.212 0.195 0.195 0.195

İnno Innovation rate 0.252 0.251 0.255 0.241 0.240 0.242
sectrtc Sectoral rate of technical change (pp) 0.053 -0.036 0.197  0.032 -0.030 0.236
lldev Standard deviation of (log) size 0.937 0.934 0.941  0.919 0.923 0.906
lnest Number of establishments (log) 4.877 4.920 4.806   4.999 5.015 4.946
nobs Number of observations 58554 36163 22391   8191 6291 1900
nest Number of establishments 12788 8943 3845   8191 6291 1900
Note: SMEs are defined as establishments smaller than the (geometric) mean establishment at the ISIC 4-digit level. 
LSEs are larger than the mean establishment. Size is defined by the number of employees. pp means "percentage point".  
Sources: SIS, Annual Survey of Manufacturing Industries. Innovation data from SIS, Technological InnovationSurvey, 1995-97. 
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Table 3. Post-entry performance and entry size            
(Plants survived at least 5 years)              
                                
Age Relative size Relative returns to scale  Relative efficiency  Relative rate of tech change (pp)
  Small Large Differ.  Small Large Differ.  Small Large Differ.  Small Large Differ.  
0     -0.731 0.776 1.508 0.073 -0.094 0.167 -0.051 0.028 0.079 0.202 -0.172 -0.373
1     

     
     
     
     
     
     
     
     

             

-0.529 0.778 1.307 0.052 -0.097 0.148 -0.038 0.046 0.085 0.066 -0.198 -0.265
2 -0.418 0.760 1.178 0.040 -0.097 0.136 -0.036 0.044 0.080 0.018 -0.215 -0.233
3 -0.343 0.736 1.079 0.028 -0.101 0.129 -0.029 0.059 0.087 0.034 -0.244 -0.278
4 -0.273 0.687 0.960 0.023 -0.100 0.123 -0.026 0.070 0.096 -0.034 -0.543 -0.509
5 -0.237 0.706 0.943 0.016 -0.099 0.115 -0.018 0.064 0.082 -0.001 -0.520 -0.519
6 -0.229 0.689 0.918 0.016 -0.100 0.116 -0.015 0.068 0.083 -0.009 -0.465 -0.456
7 -0.221 0.727 0.948 0.008 -0.102 0.110 -0.010 0.082 0.093 -0.037 -0.381 -0.344
8 -0.186 0.753 0.939 0.008 -0.096 0.103 -0.008 0.078 0.086 -0.003 -0.405 -0.402
9 -0.180 0.773 0.953 0.013 -0.112 0.124 -0.001 0.070 0.070 -0.067 -0.331 -0.264
                                
Anova results (F-statistic/d.o.f.) 
Age (9) 4.77 **   5.90 **   11.16 **   2.65 **  
Size (1) 1965.26 **   1532.47 **   747.18 **   80.91 **  
Age*Size (9) 7.76 **    3.84 **     0.48       0.72    
** means statistically significant at the 5% level             
 

 27



Table 4. Cox hazards function estimation results            

 
                                
Variables Hazard Std. Hazard Std. Hazard Std.  Hazard Std. Hazard Std.
  ratio Err.  ratio Err.  ratio Err.   ratio Err.  ratio Err.  
releff    0.783 **0.091 1.077 0.140  1.041 0.137 1.030 0.137 1.027 0.137
relrts    

    
    
     
      

        
      
      
         

          
            

            

           

3.572 **0.444 2.179 0.307 ** 2.113 0.298 ** 2.096 0.297 ** 2.068 0.297 **
relsize 0.779 **0.016 0.917 0.023 ** 0.922 0.023 ** 0.923 0.023 ** 0.922 0.023 **
relrtc 5.251

 
 **4.257
 

 4.001 3.251 * 3.209 2.629 2.893 2.379 2.898 2.423
greff  0.419 0.222 * 0.430 0.230 0.436 0.233 0.431 0.232
grrts  6.582 5.081 ** 6.557 5.022 ** 6.595 5.043 ** 6.897 5.297 **
grsize 0.530 0.068 ** 0.513 0.066 ** 0.508 0.065 ** 0.501 0.065 **
lldev  0.694 0.053 ** 0.759 0.059 ** 0.777 0.062 ** 0.742 0.062 **
rellk  0.865 0.009

 
** 0.865 0.009 ** 0.865

 
0.009

 
** 0.865

 
0.009

 
**

inno 0.529
 

0.062
 

**
lseinno 0.825 0.073 ** 0.886 0.083
smeinno 0.564

 
0.079

 
** 0.624 0.092 **

lnest 1.036 0.019 **
sectrtc                         0.758 0.250

 
  

# obs 23069 23067 23067 23023 23023
# estab.            

            
            

6874 6873 6873 6860 6860
# exits 3764 3763 3763 3755 3755
Log-likelihood -30962 -30843 -30830 -30754 -30751
Wald test 315.8 **   557.6 **   576.5 **   578.8 **   577.7 **   
** (*) means statistically significant at the 5% (10%) level.  
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Figure 2a. Relative size, cohorts of entrants
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Figure 2b. Relative size of non-survivors by survival duration
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Figure 2c. Relative size or survivors by survivors' age in 1997

-0.60

-0.50

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0 1 2 3 4 5 6 7 8 9 1

Age

R
el

at
iv

e 
si

ze

0

1 2 3 4 5 6 7 8 9

 
 
 

Figure 3a. Relative efficiency, cohorts of entrants
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Figure 3b. Relative efficiency of non-survivors by survival duration 
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Figure 3c. Relative efficiency of survivors by survivors' age in 1997
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Figure 3d. Relative efficiency by entry size, cohorts of entrants
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Figure 4a. Relative returns to scale, cohorts of entrants
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Figure 4b. Relative returns to scale by survival duration (non-survivors) 
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Figure 4c. Relative returns to scale, by survivors' age in 1997
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Figure 5a. Relative rate of technical change, cohorts of entrants
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Figure 5b. Relative rate of technical change by survival duration (non-survivors) 
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Figure 5c. Relative rate of technical change, by survivors' age in 1997
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